Making
welfare statements about aggregate demand revolves around a few key
concepts including a positive representative consumer, a wealth
distribution rule, and a
social welfare function. At a high level, these concepts seem to represent the technical assumptions and characteristics that need to hold in order to make most of the basic analysis of an intermediate microeconomics course mathematically sound or tractable for applied work. Here is a shot at some high level explanations:
positive
representative consumer- at a high level, a hypothetical consumer
who's UMP facing society's budget constraint generates a market or
economy's aggregate
demand function
wealth distribution rule - for every level of aggregate wealth, assigns individual wealth.
This
rule or function is what allows us to write aggregate demand as a
function of prices and wealth in order to move forward with the rest of
our discussion about
welfare analysis.
Examples
given in MWG include wealth distribution rules that are a function of
shareholdings of stocks and commodities which make wealth a function of
the market's
price vector
social
welfare function (SWF) - this assigns utility to the vector of utilities for
all 'I' consumers in an economy or market. W(u1,.....,uI) or can be
written in terms
of indirect utilities W(v1,....vI).
Maximizing Social Welfare and Defining the Normative Representative Consumer
The
wealth distribution rule is assumed to maximize society's social
welfare function subject to a given level of aggregate wealth. The
optimal solution indicates
a particular indirect utility function v(p,w)
Normative
Representative Consumer- a positive representative consumer is a
normative representative consumer relative to social welfare function
W(.) if for every
(p,w) the distribution of wealth maximizes W(.). v(p,w) in the optimum
is the indirect utility function for the normal representative consumer.
For
v(p,w) to exist, we are assuming a SWF, and assuming it is maximized by an
optimal distribution of wealth according to some specified wealth
distribution rule.
An example from MWG: When v(p,w) is of the Gormon form, and the SWF is utilitarian, then an aggregate demand function can always be viewed as being generated by a normative representative consumer.
No comments:
Post a Comment